If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-780x+44600=0
a = 2; b = -780; c = +44600;
Δ = b2-4ac
Δ = -7802-4·2·44600
Δ = 251600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{251600}=\sqrt{400*629}=\sqrt{400}*\sqrt{629}=20\sqrt{629}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-780)-20\sqrt{629}}{2*2}=\frac{780-20\sqrt{629}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-780)+20\sqrt{629}}{2*2}=\frac{780+20\sqrt{629}}{4} $
| 3a-16=5a+24 | | 16r-12r-r-2=10 | | 4/5y+y=30 | | 8x=x-81 | | 8m-4m=20 | | 7q-q+1=7 | | 10s+s-4s+1=15 | | 7t+4t-2t-7t=12 | | 3(2n-5)-4n=-27 | | 4x12=18 | | 17k-13k+5k=9 | | 6t+t-7t+t+4t=15 | | 10c+4c-7c-6c=19 | | (X+5)3=(7x-2)5 | | 10x-4=2x-10 | | 5x+7+x=31-2x | | 64^x+7=4^5x-3 | | 13x-9=-8x+49 | | 2x^2-4x-7x-6x-2/7x-6=0 | | 8g-7g=20 | | 1/3=7x-4 | | -16-x=-15 | | t-4.6=8.525 | | -7x=-560 | | x9=54 | | x-(x+1)=0 | | 7+3(x+2)=6x | | 11=3x+83 | | 15+s=216 | | 5c/9-7=32 | | 9x+13=95 | | 57(t−3/5)=23/4 |